Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(5): 122, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052684

RESUMO

OBJECTIVE: Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4+/-) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet. METHODS: Slc2a4+/- mice were used, that performed 5 days of endurance or strength exercise training. Further analysis included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial function, and experiments with C2C12 cell line. RESULTS: When Slc2a4+/- mice were submitted to the endurance or strength training protocol, improvements were observed in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improving skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle. CONCLUSIONS: Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the Slc2a4+/- mouse model.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Camundongos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo
2.
Cell Biochem Funct ; 41(1): 86-97, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36415950

RESUMO

Many conditions, such as inflammation and physical exercise, can induce endoplasmic reticulum (ER) stress. Toll-like Receptor 4 (TLR4) can trigger inflammation and ER stress events. However, there are still no data in the literature regarding the role of TLR4 in ER stress during exercise in skeletal muscle. Therefore, the current investigation aimed to verify the responses of ER stress markers in wild-type (WT) and Tlr4 global knockout (KO) mice after acute and chronic physical exercise protocols. Eight-week-old male WT and KO mice were submitted to acute (moderate or high intensity) and chronic (4-week protocol) treadmill exercises. Under basal conditions, KO mice showed lower performance in the rotarod test. Acute high-intensity exercise increased eIF2α protein in the WT group. After the acute high-intensity exercise, there was an increase in Casp3 and Ddit3 mRNA for the KO mice. Acute moderate exercise increased the cleaved Caspase-3/Caspase-3 in the KO group. In response to chronic exercise, the KO group showed no improvement in any performance evaluation. The 4-week chronic protocol did not generate changes in ATF6, CHOP, p-IRE1α, p-eIF2α/eIF2α, and cleaved Caspase-3/Caspase-3 ratio but reduced BiP protein compared with the KO-Sedentary group. These results demonstrate the global deletion of Tlr4 seems to have the same effects on UPR markers of WT animals after acute and chronic exercise protocols but decreased performance. The cleaved Caspase-3/Caspase-3 ratio may be activated by another pathway other than ER stress in Tlr4 KO animals.


Assuntos
Apoptose , Músculo Esquelético , Receptor 4 Toll-Like , Animais , Masculino , Camundongos , Caspase 3/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Condicionamento Físico Animal
3.
Sci Rep ; 12(1): 20006, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411310

RESUMO

The transcriptional repressor REV-ERB-α, encoded by Nuclear Receptor Subfamily 1 Group D Member 1 (Nr1d1), has been considered to play an essential role in the skeletal muscle oxidative capacity adaptation and muscle mass control. Also, this molecule regulates autophagy via the repression of autophagy-related genes both in skeletal muscle and brain regions. Classically, training programs based on endurance or strength characteristics enhance skeletal muscle mass content and/or oxidative capacity, leading to autophagy activation in several tissues. Thus, it seems that REV-ERB-α regulates similar responses induced by exercise. However, how this molecule responds to different exercise models/intensities in different tissues is still unclear. Therefore, the main aim was to characterize the responses of REV-ERB-α and autophagy-related genes to different exercise protocols (endurance/interval run/strength) in distinct tissues (gastrocnemius, soleus and hippocampus). Since REV-ERB-α presents a circadian rhythm, the analyses were performed in a time-course manner. The endurance and strength groups attenuated REV-ERB-α transcriptional response during the time course in gastrocnemius and soleus. Conversely, the interval group enhanced the Nr1d1 expression in the hippocampus. All protocols downregulated the REV-ERB-α protein levels in gastrocnemius following the exercise session with concomitant nuclear exclusion. The major autophagy-related genes presented downregulation after the exercise session in all analyzed tissues. Altogether, these results highlight that REV-ERB-α is extremely sensitive to physical exercise stimuli, including different models and intensities in skeletal muscle and the hippocampus.


Assuntos
Ritmo Circadiano , Exercício Físico , Ritmo Circadiano/genética , Autofagia/genética , Músculo Esquelético , Hipocampo
4.
Front Immunol ; 13: 953272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311768

RESUMO

Interleukin 6 (IL-6) acts as a pro and anti-inflammatory cytokine, has an intense correlation with exercise intensity, and activates various pathways such as autophagy and mitochondrial unfolded protein response. Also, IL-6 is interconnected to circadian clock-related inflammation and can be suppressed by the nuclear receptor subfamily 1, group D, member 1 (Nr1d1, protein product REV-ERBα). Since IL-6 is linked to physical exercise-modulated metabolic pathways such as autophagy and mitochondrial metabolism, we investigated the relationship of IL-6 with REV-ERBα in the adaptations of these molecular pathways in response to acute intense physical exercise in skeletal muscle. The present study was divided into three experiments. In the first one, wild-type (WT) and IL-6 knockout (IL-6 KO) mice were divided into three groups: Basal time (Basal; sacrificed before the acute exercise), 1 hour (1hr post-Ex; sacrificed 1 hour after the acute exercise), and 3 hours (3hr post-Ex; sacrificed 3 hours after the acute exercise). In the second experiment, C2C12 cells received IL-6 physiological concentrations or REV-ERBα agonist, SR9009. In the last experiment, WT mice received SR9009 injections. After the protocols, the gastrocnemius muscle or the cells were collected for reverse transcription-quantitative polymerase chain reaction (RTq-PCR) and immunoblotting techniques. In summary, the downregulation of REV-ERBα, autophagic flux, and most mitochondrial genes was verified in the IL-6 KO mice independent of exercise. The WT and IL-6 KO treated with SR9009 showed an upregulation of autophagic genes. C2C12 cells receiving IL-6 did not modulate the Nr1d1 mRNA levels but upregulated the expression of some mitochondrial genes. However, when treated with SR9009, IL-6 and mitochondrial gene expression were upregulated in C2C12 cells. The autophagic flux in C2C12 suggest the participation of REV-ERBα protein in the IL-6-induced autophagy. In conclusion, the present study verified that the adaptations required through physical exercise (increases in mitochondrial content and improvement of autophagy machinery) might be intermediated by an interaction between IL-6 and REVERBα.


Assuntos
Interleucina-6 , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Camundongos , Autofagia/genética , Biomarcadores , Produtos do Gene rev , Interleucina-6/genética , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
5.
J Cell Physiol ; 237(11): 4262-4274, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125908

RESUMO

Obesity is a worldwide health problem and is directly associated with insulin resistance and type 2 diabetes. The liver is an important organ for the control of healthy glycemic levels, since insulin resistance in this organ reduces phosphorylation of forkhead box protein 1 (FOXO1) protein, leading to higher hepatic glucose production (HGP) and fasting hyperglycemia. Aerobic physical training is known as an important strategy in increasing the insulin action in the liver by increasing FOXO1 phosphorylation and reducing gluconeogenesis. However, little is known about the effects of strength training in this context. This study aimed to investigate the effects of short-term strength training on hepatic insulin sensitivity and glycogen synthase kinase-3ß (GSK3ß) and FOXO1 phosphorylation in obese (OB) mice. To achieve this goal, OB Swiss mice performed the strength training protocol (one daily session for 15 days). Short-term strength training increased the phosphorylation of protein kinase B and GSK3ß in the liver after insulin stimulus and improved the control of HGP during the pyruvate tolerance test. On the other hand, sedentary OB animals reduced FOXO1 phosphorylation and increased the levels of nuclear FOXO1 in the liver, increasing the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) content. The bioinformatics analysis also showed positive correlations between hepatic FOXO1 levels and gluconeogenic genes, reinforcing our findings. However, strength-trained animals reverted to this scenario, regardless of body adiposity changes. In conclusion, short-term strength training is an efficient strategy to enhance the insulin action in the liver of OB mice, contributing to glycemic control by reducing the activity of hepatic FOXO1 and lowering PEPCK and G6Pase contents.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Treinamento de Força , Camundongos , Humanos , Animais , Camundongos Obesos , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Fígado/metabolismo , Insulina/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Camundongos Endogâmicos C57BL
6.
Sci Adv ; 8(30): eabm7355, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905178

RESUMO

Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP , Interleucina-6 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácidos Graxos/metabolismo , Humanos , Hipotálamo/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Oxirredução
8.
Clin Exp Pharmacol Physiol ; 49(8): 893-902, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35637552

RESUMO

Regular endurance exercise is a non-pharmacological strategy to protect the liver against diseases. Conversely, exercise may be harmful when excessive, the so-called overtraining. As expected, mice who underwent an overtraining protocol presented higher levels of proinflammatory cytokines in the serum and liver. Based on the relationship among overtraining, inflammation and mammalian target of rapamycin complex 1 (mTORC1) upregulation, the present study verified if animals submitted to an overtraining protocol, but with inhibition of the mTOR pathway via rapamycin injections could mitigate the liver and serum inflammation. Once autophagy can be linked to the improvement of hepatic dysfunction, we also investigated if the inhibition of mTORC1 by rapamycin can improve hepatic autophagy. The animals were randomized into four groups: control (CT; sedentary mice), overtraining by downhill running (OT; mice submitted to the downhill running-based overtraining protocol), overtraining by downhill running with chronic administration of rapamycin (OT/Rapa; mice submitted to the downhill running-based overtraining protocol with intraperitoneal injections of rapamycin) and aerobic (AER; submitted to aerobic training protocol). The serum and liver of the animals were used for biochemical analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunoblotting. The main results are (a) OT and OT/Rapa protocols decreased the performance; (b) the protein levels of interleukin 6 (IL-6) were higher for the OT group; the OT/Rapa group reduced the autophagic genes, increased the microtubule-associated protein light chain 3 II/I (LC3II/LC3I) protein ratio and decreased the sequestosome 1 (SQSTM1) protein. In conclusion, rapamycin appears efficiently to increase the autophagy proteins and decrease IL-6 protein in the liver of overtraining mice.


Assuntos
Interleucina-6 , Sirolimo , Animais , Autofagia , Inflamação/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Sirolimo/farmacologia
9.
Cell Biochem Funct ; 40(4): 369-378, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35411956

RESUMO

The intensity, duration, type of contraction, and muscle damage influence interleukin-6 (IL-6) response to acute exercise. However, in response to an exhaustive exercise session, the upregulation of IL-6 in the serum and heart is associated with an inflammatory condition and can inhibit autophagy. This study aimed to investigate the role of IL-6 in autophagy pathway responses and mitochondrial function in the heart of mice submitted to acute exhaustive physical exercise. The mice were allocated into three groups, five animals per group, for the wild type (WT) and the IL-6 knockout (IL-6 KO): Basal (sedentary; Basal), 1 h (after 1 h of the acute exercise; 1 h), and 3 h (after 3 h of the acute exercise; 3 h). After the specific time for each group, the blood was collected, each mouse heart was removed, and the left ventricle (LV) was isolated. In summary, under basal conditions, without the influence of the acute exercise, the IL-6 KO group showed lower number of nuclei in the cardiac tissue, but higher collagen deposition; lower messenger RNA (mRNA) levels of Prkaa1 and Mtco1, but higher mRNA levels of Ulk1; and higher protein levels of the ratio p-AMPK/AMPK in the heart when compared to WT at the same time point. After the acute exercise (1 and 3 h), the IL-6 KO group had lower mRNA levels of Tfam, Mtnd1, Mtco1, and Nampt in the heart when compared to WT after exercise; higher serum levels of creatine kinase (CK), CK-MB, and lactate dehydrogenase for the IL-6 group when compared to the WT group after the exercise. Specifically, the heat-shock protein 60 protein levels in the heart increased 3 h after exhaustive exercise in the WT group, but not in the IL-6 KO group. The study emphasizes that IL-6 may offer cardioprotective effects, including mitochondrial adaptations in response to acute exhaustive exercise.


Assuntos
Interleucina-6 , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP , Animais , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Condicionamento Físico Animal/fisiologia , RNA Mensageiro/metabolismo
10.
Life Sci ; 285: 119988, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592238

RESUMO

Strategies capable of attenuating TLR4 can attenuate metabolic processes such as inflammation, endoplasmic reticulum (ER) stress, and apoptosis in the body. Physical exercise has been a cornerstone in suppressing inflammation and dysmetabolic outcomes caused by TRL4 activation. Thus, the present study aimed to evaluate the effects of a chronic physical exercise protocol on the TLR4 expression and its repercussion in the inflammation, ER stress, and apoptosis pathways in mice hearts. Echocardiogram, RT-qPCR, immunoblotting, and histological techniques were used to evaluate the left ventricle of wild-type (WT) and Tlr4 knockout (TLR4 KO) mice submitted to a 4-week physical exercise protocol. Moreover, we performed a bioinformatics analysis to expand the relationship of Tlr4 mRNA in the heart with inflammation, ER stress, and apoptosis-related genes of several isogenic strains of BXD mice. The TLR4 KO mice had higher energy expenditure and heart rate in the control state but lower activation of apoptosis and ER stress pathways. The bioinformatics analysis reinforced these data. In the exercised state, the WT mice improved performance and cardiac function. However, these responses were blunted in the KO group. In conclusion, TLR4 has an essential role in the inhibition of apoptosis and ER stress pathways, as well as in the training-induced beneficial adaptations.


Assuntos
Apoptose/genética , Estresse do Retículo Endoplasmático/genética , Metabolismo Energético/genética , Ventrículos do Coração , Condicionamento Físico Animal , Receptor 4 Toll-Like/genética , Função Ventricular , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ecocardiografia , Deleção de Genes , Glicogênio/metabolismo , Frequência Cardíaca , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo
11.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807902

RESUMO

Although physical exercise-induced autophagy activation has been considered a therapeutic target to enhance tissue health and extend lifespan, the effects of different exercise models on autophagy in specific metabolic tissues are not completely understood. This descriptive investigation compared the acute effects of endurance (END), exhaustive (ET), strength (ST), and concurrent (CC) physical exercise protocols on markers of autophagy, genes, and proteins in the gastrocnemius muscle, heart, and liver of mice. The animals were euthanized immediately (0 h) and six hours (6 h) after the acute exercise for the measurement of glycogen levels, mRNA expression of Prkaa1, Ppargc1a, Mtor, Ulk1, Becn1, Atg5, Map1lc3b, Sqstm1, and protein levels of Beclin 1 and ATG5. The markers of autophagy were measured by quantifying the protein levels of LC3II and Sqstm1/p62 in response to three consecutive days of intraperitoneal injections of colchicine. In summary, for gastrocnemius muscle samples, the main alterations in mRNA expressions were observed after 6 h and for the ST group, and the markers of autophagy for the CC group were increased (i.e., LC3II and Sqstm1/p62). In the heart, the Beclin 1 and ATG5 levels were downregulated for the ET group. Regarding the markers of autophagy, the Sqstm1/p62 in the heart tissue was upregulated for the END and ST groups, highlighting the beneficial effects of these exercise models. The liver protein levels of ATG5 were downregulated for the ET group. After the colchicine treatment, the liver protein levels of Sqstm1/p62 were decreased for the END and ET groups compared to the CT, ST, and CC groups. These results could be related to diabetes and obesity development or liver dysfunction improvement, demanding further investigations.


Assuntos
Autofagia , Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Animais , Biomarcadores/metabolismo , Masculino , Camundongos
12.
Cytokine ; 142: 155494, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765652

RESUMO

Interleukin-6 (IL-6) is associated with pathological cardiac hypertrophy and can be dramatically increased in serum after an acute strenuous exercise session. However, IL-6 is also associated with the increased production and release of anti-inflammatory cytokines and the inhibition of tumor necrosis factor-alpha (TNF-α) after chronic moderate exercise. To elucidate the relevance of IL-6 in inflammatory and hypertrophic signaling in the heart in response to an acute strenuous exercise session, we combined transcriptome analysis using the BXD mice database and exercised IL-6 knockout mice (IL-6KO). Bioinformatic analysis demonstrated that low or high-levels of Il6 mRNA in the heart did not change the inflammation- and hypertrophy-related genes in BXD mice strains. On the other hand, bioinformatic analysis revealed a strong positive correlation between Il6 gene expression in skeletal muscle with inflammation-related genes in cardiac tissue in several BXD mouse strains, suggesting that skeletal muscle-derived IL-6 could alter the heart's intracellular signals, particularly the inflammatory signaling. As expected, an acute strenuous exercise session increased IL-6 levels in wild-type, but not in IL-6KO mice. Despite not showing morphofunctional differences in the heart at rest, the IL-6KO group presented a reduction in physical performance and attenuated IL-6, TNF-α, and IL-1beta kinetics in serum, as well as lower p38MAPK phosphorylation, Ampkalpha expression, and higher Acta1 and Tnf gene expressions in the left ventricle in the basal condition. In response to strenuous exercise, IL-6 ablation was linked to a reduction in the pro-inflammatory response and higher activation of classical physiological cardiac hypertrophy proteins.


Assuntos
Biomarcadores/metabolismo , Coração/fisiopatologia , Inflamação/patologia , Interleucina-6/deficiência , Condicionamento Físico Animal , Adenilato Quinase/metabolismo , Animais , Biomarcadores/sangue , Cardiomegalia/sangue , Cardiomegalia/genética , Eletrocardiografia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Coração/diagnóstico por imagem , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Descanso , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Front Physiol ; 12: 626096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597895

RESUMO

The nuclear receptor subfamily 1, group D member 1 (Nr1d1), plays a role in the skeletal muscle's oxidative capacity, mitochondrial biogenesis, atrophy genes, and muscle fiber size. In light of the effects of physical exercise, the present study investigates the acute response of Nr1d1 and genes related to atrophy and mitochondrial biogenesis on endurance and resistance exercise protocols. In this investigation, we observed, after one bout of endurance exercise, an upregulation of Nr1d1 in soleus muscle, but not in the gastrocnemius, and some genes related to mitochondrial biogenesis and atrophy were enhanced as well. Also, analysis of muscle transcripts from diverse isogenic BXD mice families revealed that the strains with higher Nr1d1 gene expression displayed upregulation of AMPK signaling and mitochondrial-related genes. In summary, a single session of endurance exercise can enhance the Nr1d1 mRNA levels in an oxidative muscle.

14.
Can J Physiol Pharmacol ; 99(8): 812-820, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33356867

RESUMO

Physical exercise-induced skeletal muscle damage may be characterized by increased oxidative stress, inflammation, and apoptosis which may be beneficial when exercise is regular, but it is rather harmful when exercise is exhaustive and performed acutely by unaccustomed individuals. Molecular hydrogen (H2) has emerged as a potent antioxidant, anti-inflammatory, and anti-apoptotic agent, but its action on the deleterious effects of acute exhaustive exercise in muscle damage remain unknown. Therefore, we tested the hypothesis that H2 decreases acute exhaustive exercise-induced skeletal muscle damage of sedentary rats. Rats ran to exhaustion on a sealed treadmill inhaling an H2-containing mixture or the control gas. We measured oxidative stress (SOD, GSH, and TBARS), inflammatory (TNF-α, IL-1ß, IL-6, IL-10, and NF-κB phosphorylation), and apoptotic (expression of caspase-3, Bcl-2, and HSP70) markers. Exercise caused no changes in SOD activity but increased TBARS levels. H2 caused increases in exercise-induced SOD activity and blunted exercise-induced increased TBARS levels. We observed exercise-induced TNF-α and IL-6 surges as well as NF-κB phosphorylation, which were blunted by H2. Exercise increased cleaved caspase-3 expression, and H2 reduced this response. In conclusion, H2 effectively downregulates muscle damage, reducing oxidative stress, inflammation, and apoptosis after acute exhaustive exercise performed by an unaccustomed organism.


Assuntos
Estresse Oxidativo , Animais , Anti-Inflamatórios , Antioxidantes , Inflamação , Ratos
15.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182536

RESUMO

The protective effects of chronic moderate exercise-mediated autophagy include the prevention and treatment of several diseases and the extension of lifespan. In addition, physical exercise may impair cellular structures, requiring the action of the autophagy mechanism for clearance and renovation of damaged cellular components. For the first time, we investigated the adaptations on basal autophagy flux in vivo in mice's liver, heart, and skeletal muscle tissues submitted to four different chronic exercise models: endurance, resistance, concurrent, and overtraining. Measuring the autophagy flux in vivo is crucial to access the functionality of the autophagy pathway since changes in this pathway can occur in more than five steps. Moreover, the responses of metabolic, performance, and functional parameters, as well as genes and proteins related to the autophagy pathway, were addressed. In summary, the regular exercise models exhibited normal/enhanced adaptations with reduced autophagy-related proteins in all tissues. On the other hand, the overtrained group presented higher expression of Sqstm1 and Bnip3 with negative morphological and physical performance adaptations for the liver and heart, respectively. The groups showed different adaptions in autophagy flux in skeletal muscle, suggesting the activation or inhibition of basal autophagy may not always be related to improvement or impairment of performance.


Assuntos
Autofagia/fisiologia , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Especificidade de Órgãos , Resistência Física/genética , Resistência Física/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Chin J Physiol ; 63(4): 171-178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32859884

RESUMO

During overnight sleep, the longest postabsorptive and inactive phase of the day causes protein catabolism and loss. However, the daytime ingestion of dairy proteins has been shown to stimulate muscle protein synthesis and growth. This study compared the effects of pre-sleep supplementation of a protein blend (PB) composed of micellar casein (MCa) and whey protein (1:1) versus isolate MCa on the plasma levels of branched-chain amino acids (BCAAs) and the activation of the mechanistic target of rapamycin (mTOR) signaling, a critical intracellular pathway involved in the regulation of muscle protein synthesis. After 10 h of fasting during the active phase, rats were fed with a single dose of PB or MCa (5.6 g protein/kg of body mass) by gavage, and samples of blood and gastrocnemius muscle were collected at 30, 90, and 450 min. PB and MCa supplementations induced an increase (~3-fold, P < 0.001) of plasma BCAAs at 30 and 90 min. Most importantly, the stimulatory phosphorylation levels of mTOR and its downstream target p70 ribosomal protein S6 kinase (p70S6K) were similarly higher (~2.5-fold, P < 0.001) 30 and 90 min after MCa and PB. Plasma levels of leucine, isoleucine, valine, and overall BCAAs were correlated with the activation of mTOR (P < 0.001) and p70S6K (P < 0.001). MCa and PB supplementations before the inactive phase of rats resulted in an anabolic milieu in the skeletal muscle by inducing a transient increase in plasma BCAAs and a similar activation of the mTOR/p70S6K axis.


Assuntos
Músculo Esquelético , Animais , Caseínas , Suplementos Nutricionais , Leucina , Fosforilação , Ratos , Sirolimo , Serina-Treonina Quinases TOR
17.
Cytokine ; 130: 155085, 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32259772

RESUMO

BACKGROUND: Based on the crosstalk of inflammation with apoptosis, autophagy, and endoplasmic reticulum (ER) stress, the main objective of this study was to explore the role of interleukin-6 (IL-6) on genes and proteins related to these phenomena in the livers of mice submitted to acute exhaustive exercise. METHODS: Reverse transcription-quantitative polymerase chain reaction and immunoblotting technique were used to evaluate the livers of wild-type (WT) and IL-6 knockout (KO) mice at baseline (BL) and 3 h after the acute exhaustive physical exercise (EE). RESULTS: Compared to the WT at baseline, the IL-6 KO had lower exhaustion velocity, mRNA levels of Mtor, Ulk1, Map1lc3b, and Mapk14, and protein contents of ATG5 and p-p70S6K/p70S6K. For the WT group, the EE decreased glycemia, mRNA levels of Casp3, Mtor, Ulk1, Foxo1a, Mapk14, and Ppargc1a, and protein contents of ATG5 and p-p70S6K/p70S6K, but increased mRNA levels of Sqstm1. For the IL-6 KO group, the EE decreased glycemia, mRNA levels of Casp3 and Foxo1a, and protein contents of pAkt/Akt and Mature/Pro IL-1beta, but increased mRNA levels of Sqstm1, and protein contents of p-AMPK/AMPK. CONCLUSION: The inhibition of the hepatic autophagy markers induced by the acute EE was attenuated in IL-6 KO mice, highlighting a new function of this cytokine.

18.
Nutrients ; 12(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121154

RESUMO

The present study verified the responses of proteins related to the autophagy pathway after 10 h of fast with resistance exercise and protein ingestion in skeletal muscle and liver samples. The rats were distributed into five experimental groups: control (CT; sedentary and without gavage after fast), exercise immediately (EXE-imm; after fast, rats were submitted to the resistance protocol and received water by gavage immediately after exercise), exercise after 1 h (EXE-1h; after fast, rats were submitted to the resistance protocol and received water by gavage 1 h after exercise), exercise and supplementation immediately after exercise (EXE/Suppl-imm; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage immediately after exercise), exercise and supplementation 1 h after exercise (EXE/Suppl-1h; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage 1 h after exercise). In summary, the current findings show that the combination of fasting, acute resistance exercise, and protein blend ingestion (immediately or 1 h after the exercise stimulus) increased the serum levels of leucine, insulin, and glucose, as well as the autophagy protein contents in skeletal muscle, but decreased other proteins related to the autophagic pathway in the liver. These results deserve further mechanistic investigations since athletes are combining fasting with physical exercise to enhance health and performance outcomes.


Assuntos
Autofagia , Biomarcadores/metabolismo , Proteínas na Dieta/administração & dosagem , Jejum/fisiologia , Fígado/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Treinamento de Força , Albuminas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Proteínas na Dieta/farmacologia , Ingestão de Alimentos , Jejum/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Leucina/sangue , Fígado/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Triglicerídeos/sangue
19.
Life Sci ; 240: 117107, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785241

RESUMO

BACKGROUND: Toll-like receptor 4 (Tlr4) is recognized due to its role in the immune response. Also, this protein can participate in the signaling pathway of events triggered by physical exercise such as apoptosis, inflammation, and endoplasmic reticulum (ER) stress. The main objective of this study was to evaluate the role of Tlr4 in the markers of these events in the myocardium of mice submitted to acute physical exercise (APE) protocols at different intensities. METHODS: Echocardiogram, RT-qPCR, and immunoblotting technique were used to evaluate the left ventricle of wild-type (WT) and Tlr4 knockout (Tlr4 KO) submitted to APE protocols at 45, 60, and 75% of their maximal velocity. Also, we performed the bioinformatics analysis to establish the connection of heart mRNA levels of Tlr4 with heart genes of inflammation and ER stress of several isogenic strains of BXD mice. RESULTS: Under basal conditions, the Tlr4 deletion diminished the performance, and expression of inflammation and ER stress genes in the left ventricle, but increased the serum levels of CK, Il-17, and Tnf-alpha. Under the same exercise conditions, the Tlr4 deletion reduced the glycemia, serum levels of CK, Il-17, and Tnf-alpha, as well as genes and/or proteins related to apoptosis, inflammation and ER stress in the left ventricle, but increased the levels of CK-mb and LDH, as well as other genes related to apoptosis, inflammation, and ER stress in the left ventricle. CONCLUSION: Altogether, the current findings highlighted the effects of different acute exercise intensities were attenuated in the heart of Tlr4 KO mice.


Assuntos
Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Coração/fisiologia , Inflamação , Esforço Físico/fisiologia , Receptor 4 Toll-Like/fisiologia , Animais , Apoptose/genética , Biologia Computacional , Creatina Quinase/sangue , Ecocardiografia , Estresse do Retículo Endoplasmático/genética , Coração/diagnóstico por imagem , Interleucina-17/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esforço Físico/genética , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/sangue
20.
J Biomech ; 98: 109469, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31732175

RESUMO

It has been suggested that eccentric contraction (EC) is associated with increases in serially arranged sarcomeres (sarcomerogenesis), while concentric contraction (CC) has been associated with serial sarcomeres decrease. Sarcomerogenesis following EC is thought to be a protective muscle adaptation, preventing muscle injury in future eccentric exercise bouts (repeated bout effect). However, the mechanisms underlying sarcomerogenesis in EC remain unknown, and the sarcomerogenic responses observed in response to EC and CC are contradictory. We measured sarcomere length, sarcomere length uniformity, serial sarcomere number, and fascicle length in gastrocnemius medialis, tibialis anterior, vastus medialis and vastus lateralis in sedentary (SED) mice, and in mice following protocols of moderate uphill (TRU) and downhill (TRD) training and uphill (OTU) and downhill (OTD) overtraining. We found pain sensitivity after the first bout of EC exercise on TRD and OTD followed by a normalized sensory response after four weeks of training, indicating a repeated bout effect. However, these findings were not associated with sarcomerogenesis, as serial sarcomere numbers did not increase in TRD and OTD skeletal muscle samples compared to controls (SED). However, we found a decrease in serial sarcomere number in VL and TA in OTU group mice, which was associated with a decrease in fascicle length and no change of sarcomere length at the tested joint configuration. We conclude that excessive concentric muscle contraction (OTU group mice), leads to a decrease in serial sarcomere number, while moderate or excessive eccentric training, did not result in sarcomerogenesis, as reported in the literature.


Assuntos
Condicionamento Físico Animal , Sarcômeros/fisiologia , Animais , Humanos , Masculino , Camundongos , Contração Muscular , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Comportamento Sedentário , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...